Submicron Systems in Functional Foods

S.M. Melnikov, E.C.M. Bouwens, L.M. Flendrig, H. Husken, H.T.W. van der Hijden, E.G. Pelan, A.K. Popp, J.W.M. Seijen ten Hoorn, K.P. Velikov

Unilever Food and Health Research Institute Vlaardingen, the Netherlands

September 24, 2008

Key Consumer Benefit Areas

Weight Management :

- Satiety enhancement
- Sustained energy delivery
- Muscle mass preservation
- Fat loss

Cardiovascular Health :

- Lipid lowering
- Homocysteine lowering
- Blood pressure lowering
- Improved blood circulation

Mental Development & Performance :

- Mental performance and cognitive development
- Growth and physical enhancement

Resistance to Disease :

- Optimised immune function
- Increased resistance to infection
- Gut health

Background

• Functional foods – the most dynamically developing sector of food industry, with a clear match between consumer demand and business attractiveness.

• Formulation aspects of functional foods are still underestimated. Pharma explores them more seriously, but mainly considers simplified effects of food matrix (fasted vs. fed state).

• In foods we always operate in a fed state situation, and in addition we can influence the diet. Foods are enormously complex systems with huge variation of inuse and in-body properties, but our challenge is to turn this complexity to our benefit!

• Generic approaches do not always exist; mostly there are "horses for courses".

• Combination of traditional (physical and microbial stability, mouthfeel, flavour release) and novel (enhanced bioavailability, targeted delivery, in-body functionality) food attributes is a prerequisite for a successful FuFo product.

Submicron systems in functional foods: just a few examples

Nanotechnologies: How do we define them?

Nanotechnologies should probably best be understood as a *conceptual and intellectual framework* that enables the design of more complex macroscopic structures using nanometer scale building blocks.

> Weiss, Takhistov, McClements, "Functional Materials in Food Nanotechnology", J. Food Sci. (2006) 71, R107-R116

Milk

Casein Micelles

- Milk is a well known food material
- Submicron casein micelles have evolved by Nature to provide nutrition and molecular calcium for growing young (scale bar is 100 nm)

True submicron emulsion based on droplet size

- Average droplet size 190 nm
- Max droplet size < 500 nm

Droplet size measurement

with NanoZetasizer

Submicron Structures in Foods

Colloidal Delivery Systems

Food-Body Interaction Sites

Numerous physico-chemical processes are taking place in human body during food intake, digestion and absorption

Physical Chemistry of Human GI Tract

From "The Colloidal Domain" by D. Fennell Evans & Håkan Wennerström, VCH Publishers, New York (1994)

Dietary Mixed Micelle

bile acid salt cholesterol monoglyceride fatty acid phospholipid lysophospholipid lipophilic nutrient plant sterol/stanol

"peach" model

Melnikov et al, Eur. J. Lipid Sci. Technol. 105 (2003)171–185

Tailoring Bioaccessibility of Actives Using Colloidal Systems

Colloidal particles of functional actives

Tailoring Bioaccessibility of Actives Using Colloidal Systems

Food emulsions with functional actives

Submicron emulsions with functional actives

Lipid mesophases with functional actives

Predictive Modelling

Si Un

Fabrication of Colloidal Particles

Top-down approach: submicron lipid emulsions

Bottom-up approach: Fe(III) pyrophosphate – protein particles

TEM images

Chemical analysis - approximate formula $Fe_4(P_2O_7)_3$

Product Functionality Control

- Composition
- Structure
- Appearance
- Stability (microbiological, physical, chemical)
- Texture
- Taste & Flavor
- Digestion & Bioavailability
- Targeted Delivery

Design of Functional Foods

From the structural design for

- Physical stability and appearance
- Microbiological stability
- Flavour release and mouthfeel

To tailoring of *in-body functionality*

- Enhanced bioavailability
- Controlled release
- In-body structuring

Via new approach to "old" technologies

- Emulsions and foams
- Colloidal particles
- Hydrocolloids and composites
- Biomimetic systems
- Others

Summary

- Submicron colloidal dispersions suitable delivery systems for (bio)active compounds and (micro)nutrients in various functional food formats
- Expected benefits
 - solubility dispersibility balance
 - physical stability
 - product compatibility
 - morphology control amorphous vs. crystalline
 - size control
 - dissolution/digestion rate
 - bioaccessibility/bioavailability
- Bottom-up and top-down syntheses of colloidal particles

Conclusions

- Submicron colloidal systems offer an unlimited choice of innovative approaches to the design of functional foods products
- Colloidal dispersions are proven as successful delivery system for active molecules and micronutrients in foods
- Knowledge in the area develops very rapidly, and the only way to innovate successfully is to actively use *Open Innovation* with academic partners, ingredient suppliers and other businesses: *let's create new functional food propositions together!*

Cross-Industry Synergies

Sensors / Electronics monitor & diagnose

Acknowledgement

- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Utrecht University (L. Rossi, Prof. W. Kegel, Prof. A. Philipse)
- FOM Institute for Atomic and Molecular Physics (Dr. K. Campen, Dr. A. Vila Verde, Prof. M. Bonn, Prof. D. Frenkel)
- Food & Nutrition Delta (Senter Novem)
- Unilever R&D Colworth (Dr. H. Ribeiro, Dr. S. Zhu)
- Unilever R&D Shanghai (H. Li, Dr. A. Tan)
- Unilever R&D Vlaardingen colleagues

THANK YOU FOR YOUR ATTENTION!

Backup Slides

Communication Aspects

• Colloidal particles are very well-known building blocks of all foods products (e.g. casein micelles or egg yolk granules)

• Health concerns are predominantly related to the direct uptake of nanoparticles (e.g. via endocytosis) and uncontrolled bioavailability of poorly-soluble actives (particle size <100 nm)

• The challenge for foods companies is to educate consumers and clearly explain the difference between inorganic nanoparticles and all-natural submicron colloidal food systems (e.g. milk, eggs, honey, grains, etc.)

• Application of natural/biomimetic submicron particles is clearly beneficial from the communication perspective

• Additional clinical examination and demonstration of safety of foodgrade colloidal systems is required for the creation of public opinion